Applicataion of Support Vector Regression in Network Performance Evaluation
نویسندگان
چکیده
منابع مشابه
Comparison of classic regression methods with neural network and support vector machine in classifying groundwater resources
In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملSupport vector fuzzy adaptive network in regression analysis
Neural-fuzzy systems have been proved to be very useful and have been applied to modeling many humanistic problems. But these systems also have problems such as those of generalization, dimensionality, and convergence. Support vector machines, which are based on statistical learning theory and kernel transformation, are powerful modeling tools. However, they do not have the ability to represent...
متن کاملBalanced Support Vector Regression
We propose a novel idea of regression – balancing the distances from a regression function to all examples. We created a method, called balanced support vector regression (balanced SVR) in which we incorporated this idea to support vector regression (SVR) by adding an equality constraint to the SVR optimization problem. We implemented our method for two versions of SVR: ε-insensitive support ve...
متن کاملSupport Vector Ordinal Regression
In this letter, we propose two new support vector approaches for ordinal regression, which optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches guarantee that the thresholds are properly ordered at the optimal solution. The size of these optimization problems is linear in the number of training samples. The sequential minimal optimizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.10.799